TA的每日心情 | 开心 2025-1-6 19:54 |
---|
签到天数: 788 天 [LV.10]以坛为家III
荣誉会员
- 积分
- 83378
|
本帖最后由 Starlight 于 2020-5-18 16:16 编辑
可以考虑加几个svpflow-test.vpy了
这个脚本在不需要补帧的时候完全不工作,以屏幕刷新率为目标帧率,会降低1920x1080以上视频的分辨率(渣机4K补帧带不动)
四种补帧方法
svpflow 同现 svpflow-anime
svpflow_alt 对现 svpflow-anime 做小修改得来
svpflow_nvof 使用N卡Optical Flow的svp(需要20系显卡,本人无测试条件,按原先svpflow-anime脚本推导得来)
mvtools 同现 mvtools-high- import vapoursynth as vs
- # 绝大部分场景趋于理想
- # 画面快速平移时平行线有概率会烂,svpflow_alt 无此问题
- def svpflow(clip, fps, freq):
- super_params = "{pel:2,gpu:1,scale:{up:2,down:4}}"
- analyse_params = "{block:{w:32,h:32,overlap:2},main:{levels:4,search:{type:4,distance:-8,coarse:{type:4,distance:-5,bad:{range:0}}},penalty:{plevel:1.3,pzero:110,pnbour:75}},refine:[{thsad:200,search:{type:4,distance:2}}]}"
- smoothfps_params = "{rate:{num:" + str(freq) + \
- ",den:1000,abs:true},algo:21,mask:{area:100},scene:{limits:{m1:1800,m2:3600,scene:5200,zero:100,blocks:45}}}"
- svp_super = core.svp1.Super(clip, super_params)
- svp_analyse = core.svp1.Analyse(
- svp_super["clip"], svp_super["data"], clip, analyse_params)
- svp_smooth = core.svp2.SmoothFps(
- clip, svp_super["clip"], svp_super["data"], svp_analyse["clip"], svp_analyse["data"], smoothfps_params, src=clip, fps=fps)
- return svp_smooth
- # 相较于 svpflow 会更加流畅一点,但烂帧肉眼可见增多
- def svpflow_alt(clip, fps, freq):
- super_params = "{pel:2,gpu:1,scale:{up:2,down:4}}"
- analyse_params = "{block:{w:32,h:32,overlap:2},main:{levels:0,search:{type:4,distance:-8,coarse:{type:4,distance:-6,bad:{range:0}}},penalty:{plevel:1.3,pzero:110,pnbour:75}},refine:[{thsad:400,search:{type:4,distance:2}}]}"
- smoothfps_params = "{rate:{num:" + str(freq) + \
- ",den:1000,abs:true},algo:21,mask:{area:200},scene:{limits:{m1:1800,m2:3600,scene:5200,zero:100,blocks:45}}}"
- svp_super = core.svp1.Super(clip, super_params)
- svp_analyse = core.svp1.Analyse(
- svp_super["clip"], svp_super["data"], clip, analyse_params)
- svp_smooth = core.svp2.SmoothFps(
- clip, svp_super["clip"], svp_super["data"], svp_analyse["clip"], svp_analyse["data"], smoothfps_params, src=clip, fps=fps)
- return svp_smooth
- # NVIDIA Optical Flow
- def svpflow_nvof(clip, fps, freq):
- smoothfps_params = "{rate:{num:" + \
- str(freq) + ",den:1000,abs:true},algo:21}"
- crop_clip = clip.std.Crop(0, 0, 0, 2)
- svp_smooth = core.svp2.SmoothFps_NVOF(
- clip, smoothfps_params, nvof_src=crop_clip, src=clip, fps=fps)
- return svp_smooth
- # mvtools-high
- def mvtools(clip, fps, freq):
- clip = core.std.AssumeFPS(clip, fpsnum=fps, fpsden=1)
- mv_super = core.mv.Super(clip, pel=2, sharp=2, rfilter=4,
- hpad=16, vpad=8, levels=0)
- mv_vec_b = core.mv.Analyse(mv_super, blksize=32, blksizev=16, overlap=16, overlapv=8, levels=0,
- isb=True, search=3, searchparam=0, pelsearch=3, badrange=-1, badsad=10000)
- mv_vec_f = core.mv.Analyse(mv_super, blksize=32, blksizev=16, overlap=16, overlapv=8, levels=0,
- isb=False, search=3, searchparam=0, pelsearch=3, badrange=-1, badsad=10000)
- mv_smooth = core.mv.BlockFPS(clip, mv_super, mv_vec_b, mv_vec_f,
- num=freq, den=1000, mode=2, ml=1020.0, thscd1=16320, thscd2=255)
- return mv_smooth
- # scale-down
- def clip_fit(clip, clip_w, clip_h, fit_w, fit_h):
- ratio = min(fit_w / clip_w, fit_h / clip_h)
- if (ratio < 1):
- clip = clip.resize.Lanczos(
- width=int(clip_w * ratio), height=int(clip_h * ratio))
- return clip
- # 补帧方法 (svpflow / svpflow_alt / svpflow_nvof / mvtools)
- clip_interp = svpflow
- fps = container_fps if (container_fps > 0.1) else 24
- freq = display_fps if (display_fps > 0.1) else 60
- if (fps < freq):
- core = vs.core
- core.max_cache_size = 8192
- clip = video_in
- clip = clip.resize.Point(format=vs.YUV420P8, dither_type="random")
- clip = clip_fit(clip, video_in_dw, video_in_dh, 1920, 1080)
- clip = clip_interp(clip, fps, int(freq * 1000))
- clip = core.std.AssumeFPS(clip, fpsnum=clip.fps_num, fpsden=clip.fps_den)
- clip.set_output()
复制代码
另外附上版本号高了0.0.0.001的svpflow2_vs64.dll
|
|